
Activation Probing Framework
Design Document

Version: 20260130

1 Goal
Discover natural event spaces in the RNN hidden layer by probing activations at specific positions in the
data where we know what’s happening semantically.

Not: Dump all activations and hope patterns emerge.
Instead: Query for specific conditions, examine activations there.

2 The Experimental Loop
1. Hypothesize an event space (e.g., “previous char was space”)

2. Query the dataset for positions matching this condition

3. Probe the hidden activations at those positions

4. Analyze which neurons activate consistently

5. Compare to positions where condition is false

6. Conclude whether there’s a neuron/group encoding this feature

3 Query Language
We need to express conditions like:

prev_char == ’ ’ # after space
prev_char in "aeiou" # after vowel
curr_char == ’<’ # start of XML tag
window[-3:] == "the" # after "the"
in_context("</") # inside closing tag

3.1 Primitives
prev char The byte at position t − 1
curr char The byte at position t (input to RNN)
next char The byte at position t + 1 (target)
window[i:j] Slice of context around position
position Absolute position in file

1

3.2 Predicates
char == ’x’ Exact match
char in "set" Character class
char.isalpha() Letter
char.isdigit() Digit
char.isspace() Whitespace
window.startswith(s) Context match
window.endswith(s) Context match

3.3 Compound Queries
prev_char == ’ ’ AND curr_char.isalpha() # word start
prev_char.isalpha() AND curr_char == ’ ’ # word end
window[-4:] == "<ref" AND curr_char == ’>’ # end of <ref>

4 Probe Output
For each matching position, record:

{
position: 12345,
context: "...the <ref>foo</ref> and...",
curr_char: ’<’,
hidden: [0.82, -0.31, 0.95, ...], # 128 floats
output_top5: [(’r’, 0.23), (’/’, 0.18), ...]

}

5 Analysis Tools
5.1 Single Query Analysis
Given N matching positions:

• Mean activation per neuron: h̄j = 1
N

∑
i h

(i)
j

• Std deviation: How consistent is this neuron?

• Histogram: Distribution of activations for each neuron

5.2 Contrastive Analysis
Compare query Q (condition true) vs Q̄ (condition false):

• Difference of means: h̄Q
j − h̄Q̄

j

• Effect size: Which neurons differ most between conditions?

• Selectivity: Does neuron j activate only for Q?

A neuron that:

• Has high mean activation for Q

• Has low mean activation for Q̄

• Has low variance in both cases

...is a good candidate for encoding the feature Q.

2

5.3 Clustering
Given multiple queries Q1, Q2, . . .:

• Which neurons respond similarly across queries?

• Are there groups of neurons that always co-activate?

• Are there groups that are mutually exclusive?

Mutual exclusivity suggests an event space.

6 Expected Lexical Features
Hypotheses to test first (single-char Markov level):

1. prev char == ’ ’ — “after space” neuron(s)

2. prev char in "aeiouAEIOU" — “after vowel”

3. prev char in "0123456789" — “after digit”

4. curr char == ’<’ — “XML tag start”

5. prev char == ’\n’ — “start of line”

6. prev char.isalpha() and curr char.isalpha() — “mid-word”

For each, we expect to find neurons that light up specifically for that condition.

7 Expected Event Spaces
If neurons {h3, h17, h42} are:

• Mutually exclusive (never all high together)

• Exhaustive (one is always high)

Then they form an event space.
Hypothesis: There’s an ES for “character class of previous char”:

• evowel: prev was vowel

• econsonant: prev was consonant

• edigit: prev was digit

• espace: prev was space

• epunct: prev was punctuation

• eother: prev was something else

This would be a 6-way ES encoded across some subset of the 128 neurons.

3

8 CLI Design
Find positions matching a query
./hutter probe --query "prev_char == ’ ’" --limit 1000 enwik9

Show activation statistics
./hutter probe --query "prev_char == ’ ’" --stats enwik9

Contrastive: compare two conditions
./hutter probe --query "prev_char == ’ ’" \

--contrast "prev_char.isalpha()" \
--stats enwik9

Dump raw activations for external analysis
./hutter probe --query "prev_char == ’ ’" --dump activations.csv enwik9

Interactive mode: try queries, see results
./hutter probe --interactive enwik9

9 Implementation Phases
9.1 Phase 1: Basic Probing

• Load trained model

• Scan file, evaluate simple predicates (exact char matches)

• At matching positions, run forward pass, record hidden state

• Compute mean/std per neuron

• Print top neurons by activation

9.2 Phase 2: Contrastive Analysis
• Run two queries (condition true vs false)

• Compute difference of means

• Rank neurons by selectivity

• Visualize with ASCII histogram

9.3 Phase 3: ES Discovery
• Run multiple related queries

• Cluster neurons by response pattern

• Identify mutually exclusive groups

• Propose ES partitions

9.4 Phase 4: Validation
• Given discovered ES, extract UM patterns

• Compare UM vs RNN accuracy

• Iterate on ES boundaries

4

10 Data Structures
// Query result for one position
typedef struct {

long position;
unsigned char context[64]; // surrounding bytes
unsigned char curr_char;
unsigned char next_char; // target
float hidden[HIDDEN_SIZE]; // activation snapshot

} ProbeResult;

// Aggregated statistics
typedef struct {

int count;
float mean[HIDDEN_SIZE];
float std[HIDDEN_SIZE];
float min[HIDDEN_SIZE];
float max[HIDDEN_SIZE];

} ProbeStats;

11 Open Questions
1. How many samples do we need per query for stable statistics?

2. Should we probe pre-tanh or post-tanh activations?

3. How do we handle the recurrent state? (activations depend on history)

4. What’s the right similarity metric for clustering neurons?

12 Current Status
Design document This file
Implementation Not started

5

