RNN to Universal Model Mapping

Working Document

Version: 20260130-v2

IMPORTANT: T values are LOG support, not probabilities. Support values do NOT sum to any
constant within an ES. To get probabilities, apply softmax to 1" within each ES. See Section 5.

1 Key Insight: Event Spaces and Softmax

Every softmax indicates an event space. In the UM, only positive support can exist. The only downward
pressure comes from competition within event spaces (via softmax).

The output layer is an ES: 256 bytes. We predict an output distribution € [0,255]>%% (support val-
ues), then softmax for probabilities. The internal event spaces remain to be discovered—this is the main
experimental problem.

2 What We Are Actually Doing

1. Compile patterns into the RNN by training (opaque weights)
2. Extract patterns back out as events
3. Discover intermediate event spaces (partition of hidden state)

4. Name the events (interpretable features)

The input event names are trivial: “The input is ‘a’” etc. The output events likewise. The intermediate
ones we discover inductively.

We're building a lexicon and grammar as we go. What the RNN discovers as a black box, we rediscover
in interpretable form.

The lexicon comes first—single-character Markov patterns are what the RNN learns most easily.

3 The Doubled-E Trick

Doubling the hidden state (h; — {h;, h;}) creates a binary ES for each neuron. This is a mechanical trick
to handle negative weights, not the natural factorization.
With 128 hidden neurons, we get 128 binary event spaces. This is the maximally fine-grained partition.
The goal: find coarser partitions that are semantically meaningful. Group hidden activations into ESs
where:

e Activations within each ES compete via softmax
e Model accuracy is preserved

o ESs have interpretable meanings (lexical features, grammatical features)

4 RNN Architecture

Single-layer Elman RNN for byte-level prediction.

Spaces:
xz € {0,...,255} (input byte—an ES)
hy € R128 (hidden state—ESs to be discovered)
y; € R?56 (output logits—an ES)

Forward pass (one timestep):

hy = tanh(Wop[:, 2¢] + Whi - he—1 + bp)
yr = softmax(Wh,, - hy + by)

Parameters:

w. n € R128X256
x
Whh c R128><12S
Wh c R256X128
Y
bh c R128, by c R256

input to hidden)
hidden to hidden)
hidden to output)

(
(
(
(biases)
5 Universal Model Formalism
From CMP paper: u = (E,T, P, f,w)
Components:

o E = Event space (factored as []; E;)

o T:E —[0,255] = Total thought (LOG support for each event)

e PC FE x E x[0,255] = Pattern space (positive only!)

fp : T = T = Update function

e w = Learning function

CRITICAL: T values are log support, not probabilities.

o t = 20 for all events in an ES # t = 1 for all events (same probabilities after softmax, but different
support levels)

e Support values do NOT sum to any constant
o To get probabilities: p; = softmax(t); = e’/ > els

Standard update function:
(fp); = max min(t;, pi;)

Key constraint: Only positive patterns exist. Downward pressure comes exclusively from competition
within event spaces (via softmax when converting to probabilities).

6 ESs Are The Only Non-Linearity

Critical insight: Without knowing the ESs, we cannot do a forward pass.
The UM forward pass structure:

1. Apply patterns (this is linear: max-min over pattern strengths)
2. Apply softmax within each ES (this is the non-linearity)

The softmax step is where competition happens. Without knowing which events belong to which ES, we
don’t know where to apply softmax.

The RNN’s implicit ESs:
The RNN implements ESs implicitly through:

o tanh non-linearity (squashes to [—1,1])
o Negative weights (create downward pressure)
« Biases (shift decision boundaries)

Our task: find ESs such that softmax-within-ES produces equivalent downward pressure to what
the RNN computes.

7 Remapping Negative Weights

Key insight: h; (“not h;”) is a placeholder, not a real event. ~ ~
In the doubled-E trick, negative weight w;; < 0 becomes pattern (e; — h;). But h; just means “support
for h; being inactive.”

With real ESs:
If h; belongs to ES = {h;, hy, by, }, then:

o Negative weight TO h; should become positive weight TO hy or h,

o Supporting “not h;” = supporting the competitors of h; in its ES

Structure in weights reveals ESs:
If neurons j, k, m share an ES, we expect:

e Negative weights TO j correlate with positive weights TO k, m
e They play similar “roles”—same sources tend to activate one OR another
e They are mutually exclusive in activation patterns

This correlation structure in the weight matrices is a signal for discovering ESs.

The search:
Find ESs such that:

softmax within ES ~ RNN’s tanh + negative weights + biases
When we find the right partition, the negative weight patterns “collapse” into positive patterns to ES-
mates.
8 Doubled-E Baseline Implementation

Status: COMPLETE — Exact equivalence verified.

8.1 The Key Mathematical Insight
The tanh function and binary softmax are related:
tanh(z) =2-0(2z) — 1

where o(z) = 1/(1 +e~7) is the sigmoid function.
For a binary ES {h;, h;} with support values ¢}, and t;:

etr

eth + etn =o(th —t3)

p(h;) = softmax([ty,t;])o =

To achieve tanh(pre;,) =2 - p(h;) — 1, we need:

p(hj) =o(2-pre,) = th—t; =2 pre,

8.2 Support Value Mapping
Given the RNN pre-activation prey[j] = Wanlf, xt] + Whalj,] - he—1 + brlj]:
t(h;) = 2- max(0,pre,[j]), t(h;) =2 max(0, —prey[s])
This ensures:
o Ifpre, >0: t), —t; =2 -pre, —0=2-pre, v

o If pre, <0: ¢, —t; =0 —2|pre,| =2 pre, v

8.3 Forward Pass Algorithm

1. Compute pre-activation (same as RNN):

pre 7] = bali] + Wenljs 2] + > Wanlj, k] - by [k]
k

2. Convert to doubled-E support:

t(hj) = 2 - max(0, prey[j]), t(ﬁj) = 2 - max(0, —pre, [4])
3. Apply binary softmax:
h et(hj)
p(j) o et(hj) —+ et(ﬁj)

4. Map to hidden output (for propagation to next layer):
hout[j] = 2 p(hj) —1€ [—1,1]

5. Compute output logits:

ylo] = by[o] + Z Whylo, 4] + hous [J]

6. Apply output softmax for prediction distribution.

8.4 Why the Doubling Doesn’t Propagate

A key insight: the doubling is local to each layer’s non-linearity.

After softmax competition within each binary ES {h;, h;}, we extract p(h;) and map it back to [—1,1]
via hout = 2p — 1. The ﬁj events have served their purpose (enabling competition) and are discarded.

The next layer sees only hoy[j] € [—1, 1], exactly as the RNN would produce. This is why we can defer
natural ES discovery—the doubled-E trick gives us a working UM immediately.

8.5 Verification Results

Tested on two datasets with a trained model:

Dataset RNN bpc UM bpce Difference
hutter.c (90 KB) 7.1887 7.1887 0.00%
enwik9 sample (100 KB) 6.3810 6.3810 0.00%

Step-by-step predictions also match exactly (same top prediction, same probability).

8.6 What This Enables
1. Direct isomorphism: RNN — UM without discovering natural ESs first

2. Interpretable representation: Patterns are explicit (source, destination, strength)
3. Foundation for ES discovery: Can now refine binary ESs into natural ones while preserving accuracy

4. Validation baseline: Any proposed ES partition must match or beat this bpc

9 Pattern Extraction (Doubled-E Baseline)

For the mechanical baseline using 128 binary ESs:

9.1 Event Spaces

Er ={eo,e1,...,€255} |Er| = 256 (input bytes)
Ey = {ho,ho,h1,h1,...} |Ex| = 256 (128 binary ESs)
Eo ={00,01,...,0255} |Eo| = 256 (output bytes)

Each binary ES {h;, ﬁj} competes via softmax. Both can have arbitrary support; softmax determines
which “wins.”

9.2 Pattern Sets

P.p: Input — Hidden (from W)
For each Wy [h][d]:

(e; = hy) strength oc Wop[h][i] if Wop[R][i] >0
(e; — hp) strength o [Wyp[h][i]| if Was[R][i] < 0

Negative weight means: “input ¢ supports h being inactive” Competition within {hj, l_Lh} via softmax
resolves which dominates.
Py,,: Hidden — Hidden (from W},;,) — same logic.
Ppy: Hidden — Output (from W,)
For each Wj,,[o][h]:
(hh — 00) if Why[o] [h] >0
(ilh — 00) if Why[o] [h] <0

Negative weight means: “h being inactive supports output o.”

10 Discovering Natural Event Spaces

10.1 Observation Method (Activation Probing)

Run specific queries against the data (see activation-probing.tex). At matching positions, record hidden
activations h; € R28.
Look for groups of neurons where:

o One neuron in the group tends to dominate (winner-take-all behavior)
e Other neurons in the group are suppressed when one is active

e The group has interpretable meaning

10.2 Weight Correlation Method
Analyze weight matrices for correlation structure:
e For each neuron j, find which other neurons have correlated incoming weights

e Specifically: neurons where negative weights from source i to j correlate with positive weights from 4
to k

o These (j, k) pairs are candidates for sharing an ES

10.3 Expected Discoveries (Lexicon First)

First-order patterns (single-char Markov) should appear as:
o ES for “previous char class” (vowel, consonant, digit, space, etc.)
o ES for “current position in word” (start, middle, end)
e ES for character-specific features

These form the lexicon—the vocabulary of events the model uses internally.
Higher-order patterns (grammar) build on the lexicon:

e ES for “in XML tag”
o ES for “in quoted string”

o ES for syntactic structures

11 Validation

11.1 Accuracy Metric

Bits-per-character is the primary metric. This measures cross-entropy loss: how well the predicted distri-
bution matches actual next byte.
Same bpc = same compression performance = successful translation.

11.2 Interpretability Metrics
1. Can we name each ES?
2. Do the names make linguistic/structural sense?

3. Can we predict ES behavior on new inputs?

12 Implementation Status
Component Status Notes
Doubled-E pattern extraction = Complete Exact RNN match verified
RNN vs UM comparison mode Complete ./hutter um command
Activation probing framework = Complete ./hutter probe command
Weight correlation analysis Not implemented Next priority
ES discovery tooling Not implemented Depends on above
13 Next Steps
1. Weight correlation analysis: Find ES candidates by analyzing which neurons have anti-correlated

incoming weights (negative to one < positive to another).

Activation probing experiments: Use the probe tool to find contexts where specific neurons com-
pete. Example queries:

o After vowels vs. after consonants
o Inside XML tags vs. outside

o After space vs. mid-word

Propose candidate ESs: Based on correlation and probing data, propose groups of neurons that
might share an ES.

. Test ES partitions: Replace binary ESs with proposed groupings, verify bpc is preserved.

Name the events: Give interpretable names to discovered ESs, building the lexicon.

