

RNN to Universal Model Mapping

Working Document

Version: 20260130-v2

IMPORTANT: T values are LOG support, not probabilities. Support values do NOT sum to any constant within an ES. To get probabilities, apply softmax to T within each ES. See Section 5.

1 Key Insight: Event Spaces and Softmax

Every softmax indicates an event space. In the UM, **only positive support can exist**. The only downward pressure comes from competition *within* event spaces (via softmax).

The output layer is an ES: 256 bytes. We predict an output $distribution \in [0, 255]^{256}$ (support values), then softmax for probabilities. The internal event spaces remain to be discovered—this is the main experimental problem.

2 What We Are Actually Doing

1. **Compile** patterns into the RNN by training (opaque weights)
2. **Extract** patterns back out as events
3. **Discover** intermediate event spaces (partition of hidden state)
4. **Name** the events (interpretable features)

The input event names are trivial: “The input is ‘a’” etc. The output events likewise. The intermediate ones we discover inductively.

We’re building a **lexicon** and **grammar** as we go. What the RNN discovers as a black box, we rediscover in interpretable form.

The lexicon comes first—single-character Markov patterns are what the RNN learns most easily.

3 The Doubled-E Trick

Doubling the hidden state ($h_j \rightarrow \{h_j, \bar{h}_j\}$) creates a binary ES for each neuron. This is a **mechanical trick** to handle negative weights, not the natural factorization.

With 128 hidden neurons, we get 128 binary event spaces. This is the maximally fine-grained partition.

The goal: find **coarser partitions** that are semantically meaningful. Group hidden activations into ESs where:

- Activations within each ES compete via softmax
- Model accuracy is preserved
- ESs have interpretable meanings (lexical features, grammatical features)

4 RNN Architecture

Single-layer Elman RNN for byte-level prediction.

Spaces:

$$\begin{aligned} x_t &\in \{0, \dots, 255\} && \text{(input byte—an ES)} \\ h_t &\in \mathbb{R}^{128} && \text{(hidden state—ESs to be discovered)} \\ y_t &\in \mathbb{R}^{256} && \text{(output logits—an ES)} \end{aligned}$$

Forward pass (one timestep):

$$\begin{aligned} h_t &= \tanh(W_{xh}[:, x_t] + W_{hh} \cdot h_{t-1} + b_h) \\ y_t &= \text{softmax}(W_{hy} \cdot h_t + b_y) \end{aligned}$$

Parameters:

$$\begin{aligned} W_{xh} &\in \mathbb{R}^{128 \times 256} && \text{(input to hidden)} \\ W_{hh} &\in \mathbb{R}^{128 \times 128} && \text{(hidden to hidden)} \\ W_{hy} &\in \mathbb{R}^{256 \times 128} && \text{(hidden to output)} \\ b_h &\in \mathbb{R}^{128}, \quad b_y &\in \mathbb{R}^{256} && \text{(biases)} \end{aligned}$$

5 Universal Model Formalism

From CMP paper: $u = (E, T, P, f, \omega)$

Components:

- E = Event space (factored as $\prod_i E_i$)
- $T : E \rightarrow [0, 255]$ = Total thought (**LOG support** for each event)
- $P \subseteq E \times E \times [0, 255]$ = Pattern space (positive only!)
- $f_p : T \rightarrow T$ = Update function
- ω = Learning function

CRITICAL: T values are log support, not probabilities.

- $t = 20$ for all events in an ES $\neq t = 1$ for all events (same probabilities after softmax, but different support levels)
- Support values do NOT sum to any constant
- To get probabilities: $p_i = \text{softmax}(t)_i = e^{t_i} / \sum_j e^{t_j}$

Standard update function:

$$(f_p(t))_j := \max_i \min(t_i, p_{ij})$$

Key constraint: Only positive patterns exist. Downward pressure comes exclusively from competition within event spaces (via softmax when converting to probabilities).

6 ESs Are The Only Non-Linearity

Critical insight: Without knowing the ESs, we cannot do a forward pass.

The UM forward pass structure:

1. Apply patterns (this is linear: max-min over pattern strengths)
2. Apply softmax within each ES (this is the non-linearity)

The softmax step is where competition happens. Without knowing which events belong to which ES, we don't know where to apply softmax.

The RNN's implicit ESs:

The RNN implements ESs implicitly through:

- \tanh non-linearity (squashes to $[-1, 1]$)
- Negative weights (create downward pressure)
- Biases (shift decision boundaries)

Our task: find ESs such that softmax-within-ES produces **equivalent downward pressure** to what the RNN computes.

7 Remapping Negative Weights

Key insight: \bar{h}_j (“not h_j ”) is a placeholder, not a real event.

In the doubled-E trick, negative weight $w_{ij} < 0$ becomes pattern $(e_i \rightarrow \bar{h}_j)$. But \bar{h}_j just means “support for h_j being inactive.”

With real ESs:

If h_j belongs to $\text{ES} = \{h_j, h_k, h_m\}$, then:

- Negative weight TO h_j should become positive weight TO h_k or h_m
- Supporting “not h_j ” = supporting the competitors of h_j in its ES

Structure in weights reveals ESs:

If neurons j, k, m share an ES, we expect:

- Negative weights TO j correlate with positive weights TO k, m
- They play similar “roles”—same sources tend to activate one OR another
- They are mutually exclusive in activation patterns

This correlation structure in the weight matrices is a signal for discovering ESs.

The search:

Find ESs such that:

$$\text{softmax within ES} \approx \text{RNN's } \tanh + \text{negative weights} + \text{biases}$$

When we find the right partition, the negative weight patterns “collapse” into positive patterns to ES-estimates.

8 Doubled-E Baseline Implementation

Status: COMPLETE — Exact equivalence verified.

8.1 The Key Mathematical Insight

The \tanh function and binary softmax are related:

$$\tanh(x) = 2 \cdot \sigma(2x) - 1$$

where $\sigma(x) = 1/(1 + e^{-x})$ is the sigmoid function.

For a binary ES $\{h_j, \bar{h}_j\}$ with support values t_h and $t_{\bar{h}}$:

$$p(h_j) = \text{softmax}([t_h, t_{\bar{h}}])_0 = \frac{e^{t_h}}{e^{t_h} + e^{t_{\bar{h}}}} = \sigma(t_h - t_{\bar{h}})$$

To achieve $\tanh(\text{pre}_h) = 2 \cdot p(h_j) - 1$, we need:

$$p(h_j) = \sigma(2 \cdot \text{pre}_h) \Rightarrow t_h - t_{\bar{h}} = 2 \cdot \text{pre}_h$$

8.2 Support Value Mapping

Given the RNN pre-activation $\text{pre}_h[j] = W_{xh}[j, x_t] + W_{hh}[j, :] \cdot h_{t-1} + b_h[j]$:

$$t(h_j) = 2 \cdot \max(0, \text{pre}_h[j]), \quad t(\bar{h}_j) = 2 \cdot \max(0, -\text{pre}_h[j])$$

This ensures:

- If $\text{pre}_h > 0$: $t_h - t_{\bar{h}} = 2 \cdot \text{pre}_h - 0 = 2 \cdot \text{pre}_h \checkmark$
- If $\text{pre}_h < 0$: $t_h - t_{\bar{h}} = 0 - 2|\text{pre}_h| = 2 \cdot \text{pre}_h \checkmark$

8.3 Forward Pass Algorithm

1. **Compute pre-activation** (same as RNN):

$$\text{pre}_h[j] = b_h[j] + W_{xh}[j, x_t] + \sum_k W_{hh}[j, k] \cdot h_{t-1}[k]$$

2. **Convert to doubled-E support**:

$$t(h_j) = 2 \cdot \max(0, \text{pre}_h[j]), \quad t(\bar{h}_j) = 2 \cdot \max(0, -\text{pre}_h[j])$$

3. **Apply binary softmax**:

$$p(h_j) = \frac{e^{t(h_j)}}{e^{t(h_j)} + e^{t(\bar{h}_j)}}$$

4. **Map to hidden output** (for propagation to next layer):

$$h_{\text{out}}[j] = 2 \cdot p(h_j) - 1 \in [-1, 1]$$

5. **Compute output logits**:

$$y[o] = b_y[o] + \sum_j W_{hy}[o, j] \cdot h_{\text{out}}[j]$$

6. **Apply output softmax** for prediction distribution.

8.4 Why the Doubling Doesn't Propagate

A key insight: the doubling is **local to each layer's non-linearity**.

After softmax competition within each binary ES $\{h_j, \bar{h}_j\}$, we extract $p(h_j)$ and map it back to $[-1, 1]$ via $h_{\text{out}} = 2p - 1$. The \bar{h}_j events have served their purpose (enabling competition) and are discarded.

The next layer sees only $h_{\text{out}}[j] \in [-1, 1]$, exactly as the RNN would produce. This is why we can defer natural ES discovery—the doubled-E trick gives us a working UM immediately.

8.5 Verification Results

Tested on two datasets with a trained model:

Dataset	RNN bpc	UM bpc	Difference
hutter.c (90 KB)	7.1887	7.1887	0.00%
enwik9 sample (100 KB)	6.3810	6.3810	0.00%

Step-by-step predictions also match exactly (same top prediction, same probability).

8.6 What This Enables

1. **Direct isomorphism:** RNN \rightarrow UM without discovering natural ESs first
2. **Interpretable representation:** Patterns are explicit (source, destination, strength)
3. **Foundation for ES discovery:** Can now refine binary ESs into natural ones while preserving accuracy
4. **Validation baseline:** Any proposed ES partition must match or beat this bpc

9 Pattern Extraction (Doubled-E Baseline)

For the mechanical baseline using 128 binary ESs:

9.1 Event Spaces

$$\begin{aligned} E_I &= \{e_0, e_1, \dots, e_{255}\} & |E_I| &= 256 \text{ (input bytes)} \\ E_H &= \{h_0, \bar{h}_0, h_1, \bar{h}_1, \dots\} & |E_H| &= 256 \text{ (128 binary ESs)} \\ E_O &= \{o_0, o_1, \dots, o_{255}\} & |E_O| &= 256 \text{ (output bytes)} \end{aligned}$$

Each binary ES $\{h_j, \bar{h}_j\}$ competes via softmax. Both can have arbitrary support; softmax determines which “wins.”

9.2 Pattern Sets

P_{xh} : **Input \rightarrow Hidden** (from W_{xh})

For each $W_{xh}[h][i]$:

$$\begin{cases} (e_i \rightarrow h_h) \text{ strength } \propto W_{xh}[h][i] & \text{if } W_{xh}[h][i] > 0 \\ (e_i \rightarrow \bar{h}_h) \text{ strength } \propto |W_{xh}[h][i]| & \text{if } W_{xh}[h][i] < 0 \end{cases}$$

Negative weight means: “input i supports h being *inactive*.” Competition within $\{h_h, \bar{h}_h\}$ via softmax resolves which dominates.

P_{hh} : **Hidden \rightarrow Hidden** (from W_{hh}) — same logic.

P_{hy} : **Hidden \rightarrow Output** (from W_{hy})

For each $W_{hy}[o][h]$:

$$\begin{cases} (h_h \rightarrow o_o) & \text{if } W_{hy}[o][h] > 0 \\ (\bar{h}_h \rightarrow o_o) & \text{if } W_{hy}[o][h] < 0 \end{cases}$$

Negative weight means: “ h being *inactive* supports output o .”

10 Discovering Natural Event Spaces

10.1 Observation Method (Activation Probing)

Run specific queries against the data (see `activation-probing.tex`). At matching positions, record hidden activations $h_t \in \mathbb{R}^{128}$.

Look for groups of neurons where:

- One neuron in the group tends to dominate (winner-take-all behavior)
- Other neurons in the group are suppressed when one is active
- The group has interpretable meaning

10.2 Weight Correlation Method

Analyze weight matrices for correlation structure:

- For each neuron j , find which other neurons have correlated incoming weights
- Specifically: neurons where negative weights from source i to j correlate with positive weights from i to k
- These (j, k) pairs are candidates for sharing an ES

10.3 Expected Discoveries (Lexicon First)

First-order patterns (single-char Markov) should appear as:

- ES for “previous char class” (vowel, consonant, digit, space, etc.)
- ES for “current position in word” (start, middle, end)
- ES for character-specific features

These form the **lexicon**—the vocabulary of events the model uses internally.

Higher-order patterns (grammar) build on the lexicon:

- ES for “in XML tag”
- ES for “in quoted string”
- ES for syntactic structures

11 Validation

11.1 Accuracy Metric

Bits-per-character is the primary metric. This measures cross-entropy loss: how well the predicted distribution matches actual next byte.

Same bpc \Rightarrow same compression performance \Rightarrow successful translation.

11.2 Interpretability Metrics

1. Can we name each ES?
2. Do the names make linguistic/structural sense?
3. Can we predict ES behavior on new inputs?

12 Implementation Status

Component	Status	Notes
Doubled-E pattern extraction	Complete	Exact RNN match verified
RNN vs UM comparison mode	Complete	<code>./hutter um</code> command
Activation probing framework	Complete	<code>./hutter probe</code> command
Weight correlation analysis	Not implemented	Next priority
ES discovery tooling	Not implemented	Depends on above

13 Next Steps

1. **Weight correlation analysis:** Find ES candidates by analyzing which neurons have anti-correlated incoming weights (negative to one \Leftrightarrow positive to another).
2. **Activation probing experiments:** Use the probe tool to find contexts where specific neurons compete. Example queries:
 - After vowels vs. after consonants
 - Inside XML tags vs. outside
 - After space vs. mid-word
3. **Propose candidate ESs:** Based on correlation and probing data, propose groups of neurons that might share an ES.
4. **Test ES partitions:** Replace binary ESs with proposed groupings, verify bpc is preserved.
5. **Name the events:** Give interpretable names to discovered ESs, building the lexicon.