
Tock: Extracting Interpretable Structure from Learned Models

Claude (Opus 4.5) and MJC

January 2026

Abstract

We present a method for extracting interpretable Event Spaces (ESs) from trained neural
models. Starting from the CMP framework, we show that the ES→ES transition matrix provides
a literal Markov chain interpretation of model behavior. We formalize the Bayesian criterion
for ES granularity: an ES is right-sized when the cost of describing a finer partition exceeds the
entropy reduction it provides. We demonstrate on a character-level RNN trained on enwik9,
finding 5 ESs that explain 59% of model compression.

1 Introduction

The tick-tock cycle alternates between two phases: tick trains a blackbox model on data; tock
extracts interpretable structure from the trained weights. This paper concerns the tock phase.

The goal is to find the domain-natural factorization hidden within the architecture-natural
factorization. An RNN factors its computation into input embeddings, hidden states, and output
projections—this is architecture-natural. The domain (English text, XML markup) has its own
structure: letters, words, tags—this is domain-natural. Interpretability means recovering the latter
from the former.

We work with Event Spaces (ESs) as the unit of factorization. An ES is a set of mutually
exclusive events that partition some aspect of the input. For character-level modeling, the simplest
ESs partition the 256-byte alphabet into groups: digits, vowels, punctuation, etc.

2 Background: The Universal Model

Following CMP [1], a Universal Model is a tuple u = (E, T, P, f, ω) where:

� E =
∏

iEi is the total event space, factored into atomic ESs

� T : E → [0, 255] assigns support (log-probability) to events

� P ⊆ E2 is the pattern space (weighted relations between events)

� f : T → T is the update function

� ω is the learning function

The key insight from CMP: total information is invariant under factorization.

I(E) =
∑
i

I(Ei) =
∑
i

log |Ei| = log |E|

Refactoring E redistributes information among factors but preserves the total. The art is choosing
factorizations that make patterns sparse and interpretable.

1

3 The Markov Chain Interpretation

Given k Event Spaces partitioning the byte alphabet, let π : {0, . . . , 255} → {1, . . . , k} assign each
byte to its ES.

Definition 1 (ES-Markov Model). The ES-Markov model predicts the next byte in two stages:

1. Predict the next ES: P (ESt+1|ESt)

2. Predict the byte within ES: P (bytet+1|ESt+1)

The joint probability is:

P (bytet+1|bytet) = P (ESt+1|ESt) · P (bytet+1|ESt+1)

Theorem 1 (ES-Model BPC). Under the uniform within-ES assumption P (byte|ES = i) = 1/|Ei|,
the bits-per-character of the ES-Markov model is:

bpcES = H(ESt+1|ESt) + E[log2 |ESt+1|]

where the expectation is over the stationary distribution of ESs.

Proof. The log-loss per character is:

− log2 P (bytet+1|bytet) = − log2 P (ESt+1|ESt)− log2 P (bytet+1|ESt+1)

= − log2 P (ESt+1|ESt) + log2 |ESt+1|

Taking expectations yields the result.

The first term is the ES-transition entropy—how predictable is the next ES given the current
one? The second term is the within-ES entropy—how many bits to specify which byte within the
ES?

4 Bayesian Criterion for ES Granularity

When is an ES “right-sized”? Too coarse, and within-ES entropy is high. Too fine, and we pay to
describe unnecessary distinctions. The Bayesian criterion balances these.

4.1 The Cost of Partition

To specify a partition of n items into k labeled parts of sizes s1, . . . , sk:

Cost(partition) = log2

(
n

s1, s2, . . . , sk

)
= log2

n!

s1!s2! · · · sk!

For a single ES of size s splitting into two parts of sizes s1 and s2 = s− s1:

Cost(split) = log2

(
s

s1

)
This is a one-time cost, paid once to describe the model.

2

4.2 The Benefit of Splitting

Let an ES have size s with empirical within-ES distribution p1, . . . , ps over its bytes.
Before split: If we assume uniform, within-ES entropy is H0 = log2 s.
After split: Suppose we split into A (size s1) and B (size s2) such that bytes in A have total

probability mass q and bytes in B have mass 1− q. The new entropy is:

H1 = H(q) + q ·H(within A) + (1− q) ·H(within B)

where H(q) = −q log2 q − (1− q) log2(1− q) is the binary entropy of choosing sub-ES.
If we assume uniform within each sub-ES:

H1 = H(q) + q log2 s1 + (1− q) log2 s2

Benefit per character: ∆H = H0 −H1 bits saved per occurrence of this ES.

4.3 The Criterion

Let nES be the count of this ES in the data (length n).

Proposition 1 (Split Criterion). A split is justified when the total benefit exceeds the cost:

nES ·∆H > Cost(split)

Equivalently, the split is justified when:

∆H >
log2

(
s
s1

)
nES

For large nES, even small ∆H justifies a split. For rare ESs, only large entropy reductions
justify the partition cost.

4.4 Prime Cardinality

Proposition 2 (Prime ESs are Atomic). If |Ei| is prime, then Ei cannot be factored into a product
of smaller ESs. Any split is necessarily a sum (disjoint union), not a product.

This means prime-sized ESs are natural stopping points. To do better within a prime ES, we
must learn a non-uniform distribution rather than factoring further.

Example: The Vowel ES has |{a, e, i, o, u}| = 5, which is prime. We cannot factor vowels into
sub-ESs without an arbitrary split. If vowel frequencies follow a power law (e ≫ a > o > i > u),
we must either:

1. Accept uniform assumption (lose ≈ 1 bit per vowel vs. true distribution)

2. Learn the non-uniform distribution (5 parameters)

3. Split arbitrarily, e.g., {e} vs. {a, i, o, u} (pay partition cost)

5 Context-Dependent Analysis

The ES-Markov model uses only the previous ES as context. Richer contexts reveal finer structure.

3

5.1 Conditional Within-ES Entropy

For context c (e.g., a bigram or trigram), define:

H(byte|ES, c) = −
∑
b∈ES

P (b|ES, c) log2 P (b|ES, c)

When H(byte|ES, c) ≪ H(byte|ES), context c reveals sub-structure within the ES.

5.2 Example: “th” → Vowels

Unconditionally, vowels have entropy H(vowel) ≈ 2.1 bits (slightly less than log2 5 = 2.32 due to
non-uniformity).

After “th”, the distribution shifts dramatically:

e a i o u

P (·|“th”) 0.75 0.12 0.08 0.04 0.01

The conditional entropy H(vowel|“th”) ≈ 1.1 bits—roughly half the unconditional entropy.
This suggests the rule: after “th”, the Vowel ES effectively splits into {e} vs. {a, i, o, u}.

5.3 Finding Informative Contexts

Algorithm:

1. For each ES Ei

2. For each n-gram context c occurring before Ei

3. Compute H(byte|Ei, c)

4. Rank contexts by entropy reduction: H(byte|Ei)−H(byte|Ei, c)

5. Report top contexts as “interpretable rules”

These context-dependent splits are what the RNN learns implicitly. Tock extracts them as
explicit, human-readable rules.

6 Experiments

6.1 Setup

We train an Elman RNN (256 input → 128 hidden → 256 output) on enwik9 for 3 epochs, achieving
5.69 bpc. Random baseline is 8 bpc; the RNN captures 8− 5.69 = 2.31 bits/char of compression.

We discover 5 ESs via hidden-state similarity analysis:

ES Size Members

Digits 10 0-9
Punctuation 6 . , ! ? ; :
Vowels 5 a e i o u
Whitespace 3 space, tab, newline
Other 232 remaining bytes

4

6.2 ES-Markov Analysis

The ES-Markov model with uniform within-ES achieves 6.63 bpc:

� ES-transition entropy: ≈ 1.2 bits

� Within-ES entropy: ≈ 5.4 bits (dominated by “Other” at log2 232 ≈ 7.86)

Compression explained: (8− 6.63)/(8− 5.69) = 1.37/2.31 = 59%.
The remaining 41% is what the RNN knows beyond ES-level transitions: context-dependent

within-ES predictions.

6.3 Within-ES Distributions

Vowels follow a power law:

e a o i u

Frequency 0.39 0.26 0.18 0.12 0.05

Entropy: 2.06 bits (vs. 2.32 if uniform). Non-uniformity saves 0.26 bits/vowel.
Digits are dominated by year-characters:

0 1 2 3 4 5 6 7 8 9

Freq .18 .22 .12 .08 .07 .07 .06 .06 .07 .07

The dominance of 1, 0, 2 reflects years (1990s, 2000s) in Wikipedia.

6.4 Context Analysis

Top entropy-reducing contexts for Vowels:

Context H(vowel|c) Reduction

“th” 1.08 0.98 bits
“wh” 1.21 0.85 bits
“qu” 0.00 2.06 bits
“sh” 1.45 0.61 bits

The context “qu” perfectly predicts the vowel (always “u”), reducing entropy to 0.

7 Discussion

7.1 Articulatory vs. Statistical

Vowels are an ES of the articulatory system—they group by mouth shape, not by text statistics.
This is “natural” for humans but suboptimal for compression.

A purely statistical clustering might group {e, t, a} (high frequency) vs. {q, x, z} (low frequency).
This would compress better but lack phonetic interpretability.

The tension between natural and statistical factorizations is fundamental. The RNN finds
a statistical factorization (in its weights); tock attempts to extract a natural one (for human
understanding).

5

7.2 The Tick-Tock Cycle

Having extracted ESs (tock), the next tick phase feeds them back:

� Input: byte + ES membership (one-hot)

� The RNN now has explicit access to the factorization

� Hypothesis: this enables learning higher-order structure

The cycle continues: train with ES features (tick), extract finer ESs (tock), repeat.

8 Conclusion

We presented tock, the extraction phase of the tick-tock cycle. The ES→ES transition matrix
provides a literal Markov chain interpretation of model behavior. The Bayesian criterion—split
when entropy reduction exceeds partition cost—formalizes ES granularity. Context-dependent
analysis reveals the finer structure that neural models learn implicitly.

Our 5 ESs explain 59% of an RNN’s compression on enwik9. The remaining 41% lies in context-
dependent within-ES predictions—the subject of future work.

References

[1] Clement, M. (2026). CMP. https://cmpr.ai/cmp.pdf

6

https://cmpr.ai/cmp.pdf

	Introduction
	Background: The Universal Model
	The Markov Chain Interpretation
	Bayesian Criterion for ES Granularity
	The Cost of Partition
	The Benefit of Splitting
	The Criterion
	Prime Cardinality

	Context-Dependent Analysis
	Conditional Within-ES Entropy
	Example: ``th'' Vowels
	Finding Informative Contexts

	Experiments
	Setup
	ES-Markov Analysis
	Within-ES Distributions
	Context Analysis

	Discussion
	Articulatory vs. Statistical
	The Tick-Tock Cycle

	Conclusion

