Tock: Extracting Interpretable Structure from Learned Models

Claude (Opus 4.5) and MJC

January 2026

Abstract

We present a method for extracting interpretable Event Spaces (ESs) from trained neural
models. Starting from the CMP framework, we show that the ES—ES transition matrix provides
a literal Markov chain interpretation of model behavior. We formalize the Bayesian criterion
for ES granularity: an ES is right-sized when the cost of describing a finer partition exceeds the
entropy reduction it provides. We demonstrate on a character-level RNN trained on enwik9,
finding 5 ESs that explain 59% of model compression.

1 Introduction

The tick-tock cycle alternates between two phases: tick trains a blackbox model on data; tock
extracts interpretable structure from the trained weights. This paper concerns the tock phase.

The goal is to find the domain-natural factorization hidden within the architecture-natural
factorization. An RNN factors its computation into input embeddings, hidden states, and output
projections—this is architecture-natural. The domain (English text, XML markup) has its own
structure: letters, words, tags—this is domain-natural. Interpretability means recovering the latter
from the former.

We work with Event Spaces (ESs) as the unit of factorization. An ES is a set of mutually
exclusive events that partition some aspect of the input. For character-level modeling, the simplest
ESs partition the 256-byte alphabet into groups: digits, vowels, punctuation, etc.

2 Background: The Universal Model

Following CMP [1], a Universal Model is a tuple u = (E, T, P, f,w) where:

e £ =[], E; is the total event space, factored into atomic ESs

e T : E — [0,255] assigns support (log-probability) to events

e P C E? is the pattern space (weighted relations between events)
e f:T — T is the update function

e w is the learning function

The key insight from CMP: total information is invariant under factorization.
I(B) =Y I(E;) =) log|Ej| =log|E|
i i

Refactoring F redistributes information among factors but preserves the total. The art is choosing
factorizations that make patterns sparse and interpretable.

3 The Markov Chain Interpretation

Given k Event Spaces partitioning the byte alphabet, let 7 : {0,...,255} — {1,...,k} assign each
byte to its ES.

Definition 1 (ES-Markov Model). The ES-Markov model predicts the next byte in two stages:
1. Predict the next ES: P(ESi11|ES;)
2. Predict the byte within ES: P(byte,,,|ESi+1)
The joint probability is:
P(byte;|byte;) = P(ES;41|ES;) - P(bytey;|[ESt41)

Theorem 1 (ES-Model BPC). Under the uniform within-ES assumption P(byte|ES = 1) = 1/|E;|,
the bits-per-character of the ES-Markov model is:

bpcps = H(ES;11|ES;) + Ellogy |ES;11]]
where the expectation is over the stationary distribution of ESs.

Proof. The log-loss per character is:

—logy P(byte,[byte;) = —logy P(ES;+1|ES;) — logy P(bytey; 1 [ES¢41)
= —logy P(ES¢11|ES;) + logy [ES; 11|

Taking expectations yields the result. O

The first term is the ES-transition entropy—how predictable is the next ES given the current
one? The second term is the within-ES entropy—how many bits to specify which byte within the
ES?

4 Bayesian Criterion for ES Granularity

When is an ES “right-sized”? Too coarse, and within-ES entropy is high. Too fine, and we pay to
describe unnecessary distinctions. The Bayesian criterion balances these.

4.1 The Cost of Partition

To specify a partition of n items into k labeled parts of sizes s1, ..., sg:

n) n!
= 10 _—
51,89,...,8 gZS!s!---s!
1,92, s Ok 1:92 k

For a single ES of size s splitting into two parts of sizes s; and so = s — s1:

Cost(partition) = log, <

Cost(split) = log, < 3 >
51

This is a one-time cost, paid once to describe the model.

4.2 The Benefit of Splitting

Let an ES have size s with empirical within-ES distribution py, ..., ps over its bytes.

Before split: If we assume uniform, within-ES entropy is Hy = log, s.

After split: Suppose we split into A (size s1) and B (size s2) such that bytes in A have total
probability mass ¢ and bytes in B have mass 1 — q. The new entropy is:

Hy, = H(q) + q - H(within A) + (1 — ¢) - H(within B)

where H(q) = —qlogyq — (1 — q) logy(1 — g) is the binary entropy of choosing sub-ES.
If we assume uniform within each sub-ES:

Hy = H(q) + qlogy s1 + (1 — q) logy s2

Benefit per character: AH = Hy — H; bits saved per occurrence of this ES.

4.3 The Criterion

Let ngg be the count of this ES in the data (length n).

Proposition 1 (Split Criterion). A split is justified when the total benefit exceeds the cost:
ngs- AH > Cost(split)

Equivalently, the split is justified when:

log, (5)
nges

AH >

For large ngg, even small AH justifies a split. For rare ESs, only large entropy reductions
justify the partition cost.

4.4 Prime Cardinality

Proposition 2 (Prime ESs are Atomic). If |E;| is prime, then E; cannot be factored into a product
of smaller ESs. Any split is necessarily a sum (disjoint union), not a product.

This means prime-sized ESs are natural stopping points. To do better within a prime ES, we
must learn a non-uniform distribution rather than factoring further.

Example: The Vowel ES has |{a,e,i,0,u}| = 5, which is prime. We cannot factor vowels into
sub-ESs without an arbitrary split. If vowel frequencies follow a power law (e > a > 0 > i > u),
we must either:

1. Accept uniform assumption (lose ~ 1 bit per vowel vs. true distribution)
2. Learn the non-uniform distribution (5 parameters)

3. Split arbitrarily, e.g., {e} vs. {a,i,0,u} (pay partition cost)

5 Context-Dependent Analysis

The ES-Markov model uses only the previous ES as context. Richer contexts reveal finer structure.

5.1 Conditional Within-ES Entropy
For context ¢ (e.g., a bigram or trigram), define:
H(byte[ES,c) = — > P(b|ES, c) log, P(b|ES, c)
beES

When H (byte|ES, ¢) < H(byte|ES), context ¢ reveals sub-structure within the ES.

5.2 Example: “th” — Vowels

Unconditionally, vowels have entropy H (vowel) & 2.1 bits (slightly less than log, 5 = 2.32 due to
non-uniformity).
After “th”, the distribution shifts dramatically:

‘ e a 1 o) u

P([%h”) [075 012 0.08 0.04 0.01

The conditional entropy H (vowel|“th”) ~ 1.1 bits—roughly half the unconditional entropy.
This suggests the rule: after “th”, the Vowel ES effectively splits into {e} vs. {a,i,0,u}.

5.3 Finding Informative Contexts

Algorithm:
1. For each ES FE;
2. For each n-gram context ¢ occurring before Fj;
3. Compute H (byte|E;, c)
4. Rank contexts by entropy reduction: H (byte|E;) — H (byte|E;, ¢)
5. Report top contexts as “interpretable rules”

These context-dependent splits are what the RNN learns implicitly. Tock extracts them as
explicit, human-readable rules.

6 Experiments

6.1 Setup

We train an Elman RNN (256 input — 128 hidden — 256 output) on enwik9 for 3 epochs, achieving
5.69 bpc. Random baseline is 8 bpc; the RNN captures 8 — 5.69 = 2.31 bits/char of compression.
We discover 5 ESs via hidden-state similarity analysis:

ES Size | Members

Digits 10 | 0-9

Punctuation 6.,!7;:

Vowels 5laeiou
Whitespace 3 | space, tab, newline
Other 232 | remaining bytes

6.2 ES-Markov Analysis
The ES-Markov model with uniform within-ES achieves 6.63 bpc:
e ES-transition entropy: = 1.2 bits
e Within-ES entropy: = 5.4 bits (dominated by “Other” at log, 232 ~ 7.86)

Compression explained: (8 —6.63)/(8 — 5.69) = 1.37/2.31 = 59%.

The remaining 41% is what the RNN knows beyond ES-level transitions: context-dependent
within-ES predictions.
6.3 Within-ES Distributions

Vowels follow a power law:

‘ e a 0 i u
Frequency‘0.39 0.26 0.18 0.12 0.05

Entropy: 2.06 bits (vs. 2.32 if uniform). Non-uniformity saves 0.26 bits/vowel.
Digits are dominated by year-characters:

0o 1 2 3 4 5 6 7 8 9
Freq | .18 22 .12 .08 .07 .07 .06 .06 .07 .07

The dominance of 1, 0, 2 reflects years (1990s, 2000s) in Wikipedia.

6.4 Context Analysis
Top entropy-reducing contexts for Vowels:

Context ‘ H (vowel|c) ‘ Reduction

“th” 1.08 0.98 bits
“wh” 1.21 0.85 bits
“qu” 0.00 2.06 bits
“sh” 1.45 0.61 bits

[}

The context “qu” perfectly predicts the vowel (always “u”), reducing entropy to 0.

7 Discussion

7.1 Articulatory vs. Statistical

Vowels are an ES of the articulatory system—they group by mouth shape, not by text statistics.
This is “natural” for humans but suboptimal for compression.

A purely statistical clustering might group {e, t, a} (high frequency) vs. {q, z, z} (low frequency).
This would compress better but lack phonetic interpretability.

The tension between natural and statistical factorizations is fundamental. The RNN finds
a statistical factorization (in its weights); tock attempts to extract a natural one (for human
understanding).

7.2 The Tick-Tock Cycle
Having extracted ESs (tock), the next tick phase feeds them back:

e Input: byte + ES membership (one-hot)
e The RNN now has explicit access to the factorization
e Hypothesis: this enables learning higher-order structure

The cycle continues: train with ES features (tick), extract finer ESs (tock), repeat.

8 Conclusion

We presented tock, the extraction phase of the tick-tock cycle. The ES—ES transition matrix
provides a literal Markov chain interpretation of model behavior. The Bayesian criterion—split
when entropy reduction exceeds partition cost—formalizes ES granularity. Context-dependent
analysis reveals the finer structure that neural models learn implicitly.

Our 5 ESs explain 59% of an RNN’s compression on enwik9. The remaining 41% lies in context-
dependent within-ES predictions—the subject of future work.

References

[1] Clement, M. (2026). CMP. https://cmpr.ai/cmp.pdf

https://cmpr.ai/cmp.pdf

	Introduction
	Background: The Universal Model
	The Markov Chain Interpretation
	Bayesian Criterion for ES Granularity
	The Cost of Partition
	The Benefit of Splitting
	The Criterion
	Prime Cardinality

	Context-Dependent Analysis
	Conditional Within-ES Entropy
	Example: ``th'' Vowels
	Finding Informative Contexts

	Experiments
	Setup
	ES-Markov Analysis
	Within-ES Distributions
	Context Analysis

	Discussion
	Articulatory vs. Statistical
	The Tick-Tock Cycle

	Conclusion

