
Pattern Injection: UM → RNN

Hutter RNN Project

2026-01-31

1 The Isomorphism

We have two representations:

UM = (E, T, P, f, ω) (1)

RNN = (Wih,Whh,Who, bh, bo) (2)

Tock (extraction): Read patterns from trained weights.
Tick (injection): Write patterns into weights, skip training.

2 The Mapping

2.1 Forward: RNN → Predictions

ht = tanh(Wihxt +Whhht−1 + bh) (3)

ot = Whoht + bo (4)

P (et+1|ht) = softmax(ot) (5)

2.2 UM Patterns as Target

We have pattern matrix P ∈ R|E|×|E|:

P [e1, e2] = log count(e1 → e2)− log count(e1)

This is the log-probability logP (e2|e1).

2.3 The Injection Problem

Goal: Set weights such that:

Whohe1 + bo ≈ P [e1, :]

where he1 is the hidden state after seeing e1.

1

3 Simple Case: 1-Markov

For a 1-Markov model (only previous byte matters):

3.1 One-Hot Encoding

If xt is one-hot for byte e1, we want:

ot = P [e1, :] (the e1 row of pattern matrix)

3.2 Direct Injection

Set:

Wih = I (identity, or encoding matrix) (6)

Whh = 0 (no recurrence for 1-Markov) (7)

Who = PT (pattern matrix, transposed) (8)

bo = 0 (9)

Then:

ht = tanh(xt) ≈ xt (for one-hot) (10)

ot = PTxt = P [e1, :] (11)

Result: Network outputs correct bigram probabilities with no training.

4 General Case: Beyond 1-Markov

4.1 The Hidden State Problem

For k-Markov or full context:

� Hidden state ht encodes context (e1, . . . , et)

� We need: Whoht = P [context, :]

� But ht is a learned representation

4.2 Factored Injection

Factor the pattern matrix through a bottleneck:

P ≈ UV T

where U ∈ R|E|×H and V ∈ R|E|×H .
This is like SVD or matrix factorization.
Set:

Wih = U (input embedding) (12)

Who = V T (output embedding) (13)

2

4.3 The Recurrence Problem

What about Whh? This encodes how context evolves.
For ES-augmented model:

Whh = block structure respecting ES

Inject ES transition patterns into the recurrence.

5 Practical Algorithm

5.1 Step 1: Compute Patterns from Data

for each (e1, e2) in corpus:

count[e1][e2]++

P[e1, e2] = log(count[e1][e2] / sum(count[e1]))

5.2 Step 2: Factorize

U, S, V = svd(P)

U_h = U[:, :H] * sqrt(S[:H])

V_h = V[:, :H] * sqrt(S[:H])

5.3 Step 3: Inject

W_ih = U_h # input projection

W_ho = V_h.T # output projection

W_hh = ? # harder - need recurrence structure

b_o = row_means(P) # bias = marginal

5.4 Step 4: Fine-tune

Train normally, but starting from injected weights.

6 What This Buys Us

Benefit How

Faster convergence Start near good solution
Interpretable init Know what patterns are encoded
Transfer learning Inject patterns from other data
Debugging Inject known patterns, verify behavior
Hybrid models Mix learned + injected patterns

3

7 The ES Advantage

For ES-augmented model:

1. Compute ES-level patterns: PES [es1, es2]

2. Compute within-ES patterns: Pw[e|es]

3. Inject ES patterns into ES-specific weights

4. Inject within-ES patterns into within-ES weights

The factored structure makes injection cleaner.

8 Open Questions

1. How to inject recurrence patterns (Whh)?

2. What’s the right factorization rank H?

3. How much does injection help vs. random init?

4. Can we inject higher-order patterns (k-grams)?

9 Summary

TOCK TICK

(extraction) (injection)

RNN weights > UM patterns

W P

RNN weights < UM patterns

W P

The isomorphism goes both ways. We can:

� Read patterns out (interpretability)

� Write patterns in (initialization)

4

