Perfect Hashing via Prime Factorization

Hutter RNN Project
2026-01-31

1 The Problem
Given a product pattern (e1,es) € E x E, we want a perfect hash:
h:ExFE—N

such that h is injective (no collisions).

2 Construction

2.1 Step 1: Project E onto N via Primes
Assign each event e € F to a unique prime p:
m: E — Primes C N

For bytes (|E| = 256), use the first 256 primes:

m(0) =2
m(1) =3
m(2)=5

m(255) = 1619 (256th prime)

2.2 Step 2: Factor the Joint Event
For a product pattern (eg, ez), the hash is:

h(elv 62) = Pe; " Pes

Key property: This is a perfect hash because prime factorization is unique.

Given h(e,es) = n, we can recover (e, es) by factoring n.

2.3 Step 3: Add Log Support
The log support for the joint event decomposes:
et en) = ter T teses
In prime-space, this becomes:
log h(e1, e2) = log pe, + log pe,
The hash value encodes both:
e Identity: Which events (via factorization)

e Support: How much evidence (via log of hash)

2.4 Step 4: Apply Event Spaces
Factor through ES:

e1 € ES., x within,, (6)
es € ES., x within,, (7)

The ES-level hash uses ES-indexed primes:

hes(es1,€52) = Des, - Des,

With only 5 ESs, we use primes {2,3,5,7,11}.
The full hash factors:

h(ei,e2) = hgs(esi,ess) - Awithin (W1, w2)

3 The Two-Ring Visualization

3.1 Structure

Draw two concentric rings:
e Outer ring: Source events ey (or ESy)
e Inner ring: Target events ey (or ES5)

An arc from outer to inner represents a pattern (eq, ez).

3.2 Why Two Rings, Not One

One ring (our previous pattern-rings) shows e — e as arcs on a single circle.
Two rings separate source and target:

e Clearer visualization of asymmetry
e No arc crossings for “diagonal” patterns

e Natural for product structure: outer = first factor, inner = second

3.3 Log Support as Arc Weight

Arc thickness or color encodes:

weight(e1 — e2) = (¢, e,) = logcount(ey, e2)

4 The Perfect Hash Function

Combining everything:
1. Input: Pattern (eg,es)
2. Factor: (esy,w), (esa,ws)

3. Prime encode:
h = Pesy * Pesy " Qu, * Qs

where p are ES-primes and ¢ are within-ES primes.

4. Output: Unique integer h € N

4.1 Decoding

Given hash h:
1. Factor h into primes
2. Separate ES-primes from within-primes
3. Recover (esy,wy) and (ess, ws)

4. Reconstruct eq, ey

5 Collision Probability

The hash is probabilistically perfect: collision probability depends on bits
allocated.

5.1 Bit Allocation
Given k bits for the hash, partition into:

e kq bits for source event e
e ko bits for target event es

e Constraint: ki + ko < k

5.2 Collision Probability per Bit

For log-support values with noise e:
P(collision in 1 bit) = P(|t; —t2] <€) = €- p(t)

where p(t) is the density of log-support values.

5.3 Optimal Bit Assignment

Assign bits to minimize total collision probability:

kI = arg Il’]iin [P(collision; |k1) + P(collisiong|k — k1)]
1

For uniform log-support: split evenly k; = ko = k/2.
For skewed distributions: allocate more bits to higher-entropy factor.

5.4 The Noise Floor
With finite data, log-support estimates have variance:

. 1
Var(t.) ~ —
(o) ~ —
This sets a floor on distinguishability. Two events with counts nq,ne are
distinguishable if:
1

1
‘tl—t2|> — + —
ni T2

The “perfect” hash becomes perfect in the limit n — co.

6 Summary

Component Representation

Event e Prime p,

Joint (eq, e3) Product pe, - e,

Log support log(pe, * Pes)

ES factorization Separate prime families
Visualization Two joined rings

The prime factorization gives us:

e Perfect hashing (unique encoding)

¢ Additive log support (multiplication — addition in log)
e Factored structure (ES x within)

e Reversibility (can decode by factoring)

