
Perfect Hashing via Prime Factorization

Hutter RNN Project

2026-01-31

1 The Problem

Given a product pattern (e1, e2) ∈ E × E, we want a perfect hash:

h : E × E → N

such that h is injective (no collisions).

2 Construction

2.1 Step 1: Project E onto N via Primes

Assign each event e ∈ E to a unique prime pe:

π : E → Primes ⊂ N

For bytes (|E| = 256), use the first 256 primes:

π(0) = 2 (1)

π(1) = 3 (2)

π(2) = 5 (3)

... (4)

π(255) = 1619 (256th prime) (5)

2.2 Step 2: Factor the Joint Event

For a product pattern (e1, e2), the hash is:

h(e1, e2) = pe1 · pe2

Key property: This is a perfect hash because prime factorization is unique.
Given h(e1, e2) = n, we can recover (e1, e2) by factoring n.

1

2.3 Step 3: Add Log Support

The log support for the joint event decomposes:

t(e1,e2) = te1 + te2|e1

In prime-space, this becomes:

log h(e1, e2) = log pe1 + log pe2

The hash value encodes both:

� Identity: Which events (via factorization)

� Support: How much evidence (via log of hash)

2.4 Step 4: Apply Event Spaces

Factor through ES:

e1 ∈ ESe1 × withine1 (6)

e2 ∈ ESe2 × withine2 (7)

The ES-level hash uses ES-indexed primes:

hES(es1, es2) = pes1 · pes2
With only 5 ESs, we use primes {2, 3, 5, 7, 11}.
The full hash factors:

h(e1, e2) = hES(es1, es2) · hwithin(w1, w2)

3 The Two-Ring Visualization

3.1 Structure

Draw two concentric rings:

� Outer ring: Source events e1 (or ES1)

� Inner ring: Target events e2 (or ES2)

An arc from outer to inner represents a pattern (e1, e2).

3.2 Why Two Rings, Not One

One ring (our previous pattern-rings) shows e → e as arcs on a single circle.
Two rings separate source and target:

� Clearer visualization of asymmetry

� No arc crossings for “diagonal” patterns

� Natural for product structure: outer = first factor, inner = second

2

3.3 Log Support as Arc Weight

Arc thickness or color encodes:

weight(e1 → e2) = t(e1,e2) = log count(e1, e2)

4 The Perfect Hash Function

Combining everything:

1. Input: Pattern (e1, e2)

2. Factor: (es1, w1), (es2, w2)

3. Prime encode:
h = pes1 · pes2 · qw1

· qw2

where p are ES-primes and q are within-ES primes.

4. Output: Unique integer h ∈ N

4.1 Decoding

Given hash h:

1. Factor h into primes

2. Separate ES-primes from within-primes

3. Recover (es1, w1) and (es2, w2)

4. Reconstruct e1, e2

5 Collision Probability

The hash is probabilistically perfect: collision probability depends on bits
allocated.

5.1 Bit Allocation

Given k bits for the hash, partition into:

� k1 bits for source event e1

� k2 bits for target event e2

� Constraint: k1 + k2 ≤ k

3

5.2 Collision Probability per Bit

For log-support values with noise ϵ:

P (collision in 1 bit) = P (|t1 − t2| < ϵ) ≈ ϵ · p(t)

where p(t) is the density of log-support values.

5.3 Optimal Bit Assignment

Assign bits to minimize total collision probability:

k∗1 = argmin
k1

[P (collision1|k1) + P (collision2|k − k1)]

For uniform log-support: split evenly k1 = k2 = k/2.
For skewed distributions: allocate more bits to higher-entropy factor.

5.4 The Noise Floor

With finite data, log-support estimates have variance:

Var(t̂e) ≈
1

ne

This sets a floor on distinguishability. Two events with counts n1, n2 are
distinguishable if:

|t1 − t2| >
√

1

n1
+

1

n2

The “perfect” hash becomes perfect in the limit n → ∞.

6 Summary

Component Representation

Event e Prime pe
Joint (e1, e2) Product pe1 · pe2
Log support log(pe1 · pe2)
ES factorization Separate prime families
Visualization Two joined rings

The prime factorization gives us:

� Perfect hashing (unique encoding)

� Additive log support (multiplication → addition in log)

� Factored structure (ES × within)

� Reversibility (can decode by factoring)

4

