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Abstract

This paper synthesizes eight days of intensive research on interpreting an Elman RNN trained
on enwik9 for text compression. We collect the key observations, validated findings, refuted
hypotheses, and theoretical foundations that will guide continued analysis. The work establishes
a tick-tock methodology for RNN-UM (Universal Model) bidirectional translation, discovers
interpretable Event Spaces for word boundaries and syllable structure, and develops a unified
theoretical framework connecting Bayesian inference, thermodynamics, and neural computation.
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1 Model and Performance Baseline

1.1 Architecture

The model is an Elman RNN with architecture 256→128→256:

� Input: 256 one-hot bytes

� Hidden: 128 tanh units with recurrent connections

� Output: 256 softmax over next byte

1.2 Performance

Metric Value

Training data enwik9 (1B bytes Wikipedia XML)
Performance 5.69 bpc
Random baseline ∼8.0 bpc
Information captured ∼2.3 bits/char
State of art ∼1.1 bpc

1.3 The Isomorphic Universal Model

We established an exact isomorphism between the RNN and a Universal Model:

� Doubled-E representation: Each hidden neuron j becomes binary ES {h+j , h
−
j }

� Support mapping: t(h+j ) = 2max(0,preh[j]), t(h
−
j ) = 2max(0,−preh[j])

� Pattern strength: strength = ⌊2|w|+ 0.5⌋

� Verified equivalence: 0.00% bpc difference between RNN and UM

The isomorphic UM uses only positive patterns, positive events, and positive integer support
values. This is the starting point for interpretation.

2 The Tick-Tock Methodology

The core research methodology alternates between two phases:

2.1 Tock: Interpret the UM

1. Extract patterns from trained RNN weights

2. Find natural Event Spaces (coarser than doubled-E)

3. Name events and patterns semantically

4. Measure coverage: what fraction of performance is explained?
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2.2 Tick: Train with Injected Knowledge

1. Inject discovered patterns into RNN weights

2. Train on data

3. Convert back to isomorphic UM

4. Return to Tock phase

Key insight: Interpretability and compression efficiency are the same problem. Understanding
gained in Tock improves performance in the next Tick.

3 Validated Discoveries

3.1 ES1: Word Boundary Detector (h2)

The most robust discovery. The binary ES {h+2 , h
−
2 } functions as a word boundary detector.

Input patterns:

� Space → h2− with strength 8

� All letters → h2+ with strength 1

� The 8:1 ratio creates binary switch via softmax

Performance:

� ∆h2 > 0.95 marks word-start with 99.6% accuracy

� At word-start: ∆h2 = +1.87± 0.11

� At mid-word: ∆h2 = +0.03± 0.19

Interpretation:

� h+2 = “word-internal position”

� h−2 = “word boundary”

3.2 ES2: Syllable Momentum (h35)

The binary ES {h+35, h
−
35} tracks syllable structure and word length.

Mechanism:

� Vowels send weak support to h+35

� Space sends support 2 to h−35

� Critical recurrent: h+2 → h+35 with weight 0.612

� Self-connection: Whh[35, 35] = −0.184 (decay)

Behavior:

� h+35 high early in word (syllable momentum)
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� Decays over time due to negative self-connection

� Short words end with high h+35; long words with high h−35

Key finding: h35 encodes CV (consonant-vowel) syllable structure, not word identity. Words
with same CV pattern have nearly identical h35 trajectories:

� CCV words (the, she): avg distance = 0.099

� CVC words (for, was, his, can): avg distance = 0.106

� VCV words (are, one, use): avg distance = 0.097

3.3 Character Class Event Spaces

Five character classes form natural Event Spaces with high within-class similarity:

Class Count Similarity

Digits (0-9) 10 0.9996
Punctuation (.,!?) 6 0.9992
Vowels (aeiou) 5 0.9884
Whitespace (space, tab, newline) 4 —
Other 232 —

Note: Consonants do NOT form a single ES—too diverse, likely split by phonetic properties.

3.4 Pattern Injection via SVD

SVD factorization of bigram patterns successfully initializes RNN weights:

Initialization Initial bpc After 10 epochs

Random 5.46 4.81
Pattern injection 4.47 4.53

Key result: 1 bit/char head start (18% improvement) without any training.
SVD component interpretation:

� Component 0 (97.5%): Frequency baseline

� Component 1 (1.1%): ASCII vs UTF-8

� Component 2 (0.3%): Letters vs Digits/XML

� Component 3 (0.2%): Bracket structure

� Higher components: UTF-8 internals, phonotactics

English bigrams have effective dimension ∼64 (top 64 components capture 99.9% of variance).
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3.5 Neuron Clustering: 18 Natural Event Spaces

Correlation analysis reveals massive redundancy in 128 hidden neurons. Many pairs have r = 1.000
or r = −1.000, meaning they’re functionally identical or opposite.

Major clusters (neurons with r > 0.9):

� Cluster A (13 neurons): h12, h20, h39, h40, h41, h58, h59, h64, h66, h83, h85, h112, h115

� Cluster B (11 neurons): h1, h4, h16, h21, h49, h74, h95, h98, h101, h121, h124

� Cluster C (11 neurons): h5, h8, h28, h31, h38, h44, h65, h68, h77, h105, h118

� Cluster D (9 neurons): h11, h17, h22, h24, h26, h53, h81, h87, h117

� Cluster E (9 neurons): h15, h37, h79, h89, h92, h93, h100, h102, h116

Implication: The 128 binary ESs (256 events) can collapse to ∼18 natural ESs.
Saturated neurons (carry no dynamic information):

� Always ON (7): h0, h10, h19, h34, h48, h103, h109

� Always OFF (6): h6, h23, h25, h32, h90, h91

4 Refuted Hypotheses and Corrections

4.1 The 53% Illusion

Initial claim: ES features explain 53% of compression (7.31 → 3.44 bpc).
Reality:

� Baseline had exploding weights from instability

� Only compared 0.1% of data (1M chars)

� Correct improvement: ≤3.7% theoretical maximum

� ES captures only 15.9% of byte-level Markov MI

Lesson: Validate against proper baselines; compute information-theoretic bounds first.

4.2 Spectral Radius Hypothesis (P2)

Prediction: Whh eigenvalues should cluster near unit circle (0.9 < |λmax| < 1.1).
Result: |λmax| = 2.52 (dramatically outside unit circle).
Explanation: RNN does NOT use eigenvalue tuning for stability. Instead:

� Whh is expansive (would explode without nonlinearity)

� Tanh activation clamps output to [−1, 1], providing stability

� Memory mechanism is saturation, not eigenvalue decay
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4.3 Memory Depth Prediction

Prediction: Memory should decay exponentially with dmax ≈ 24/Havg ≈ 12 characters.
Observation: Dependency roughly flat to 30 characters.
Possible explanations:

� Precision limit applies to gradients (training), not inference

� Tanh normalization prevents precision loss

� Information encoded redundantly across dimensions

� Trained Whh learned efficient encoding

4.4 Word Identity Encoding

Hypothesis: Hidden states encode word identity.
Result: Word recognition from hidden states achieves only 4.9-6.4% accuracy (near random).
Explanation: A character-level model doesn’t need word identity. It encodes P (next char|context),

not “this is word X”. Words are emergent, not explicitly represented. The “lexicon” is patterns of
character transitions that covary.

5 Theoretical Framework

5.1 Unification: Q = λ

A central insight unifies four perspectives through the quotient-equals-luck principle:

Domain Formulation Meaning

Bayesian λ = 1/p, Λ = − log p luck (inverse probability)
Thermodynamics microstates shrink by λ precision loss
Arithmetic Coding interval shrinks by p = 1/λ symbolic encoding
RNN h encodes context, outputs p prediction accumulation

The quotient Q = |prior|/|posterior| = λ = 1/p unifies all four.

5.2 Time-Energy-Bits Relationship

From fundamental physics:

� Planck’s relation: E = hf

� Landauer’s principle: bits ∝ energy

� Energy-time uncertainty: bits ∝ h/time

Depth limit interpretation: dmax = 24/Havg simultaneously represents:

� A bit budget (information theory)

� An energy budget (thermodynamics)

� A temporal horizon (time)

� A precision limit (float32 has 24 mantissa bits)
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5.3 AC-RNN Correspondence

Arithmetic coding and RNN hidden states are analogous:

� AC state: interval [low,high) shrinks as symbols encoded

� RNN state: h ∈ R128 evolves as text processed

� Both accumulate context over time

� Both hit precision limits (AC ∼32-64 bits; RNN ∼24 bits × 128 dims)

Key difference: RNN achieves stability through tanh saturation, not precision-limited arith-
metic. The mechanisms differ even if the information-theoretic constraints match.

5.4 Pattern Depth is Free

Adding deterministic Event Space membership to inputs doubles effective pattern depth:

� Standard input: xt (256 dims for byte)

� Augmented input: (xt,ES(xt)) (260 dims)

� ES membership is a lookup table (vowel, digit, punctuation)

� No learning needed—compile to lookup, inject into input

5.5 Factor Maps as Patterns on U2

A theoretical contribution connecting:

� Factor maps π : U → U ′ are patterns on U × U ′

� Factor maps = embeddings = patterns (all live in U2)

� Composition via tropical matrix multiplication

� Factor lattice structures model hierarchies

6 Current Coverage

6.1 Pattern Inventory

Pattern Type Count

Input → Hidden (strength ≥ 1) 49
Hidden → Output (strength ≥ 1) 253
Hidden → Hidden (strength ≥ 1) 4,183

Total significant (excluding recurrent) 302
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6.2 Event Coverage

Layer Total Interpreted Coverage

Input 256 17 6.6%
Hidden 256 4 (h2, h35, h62, h3) 1.6%
Output 256 217 84.8%

Total 768 238 31.0%

6.3 BPC Attribution

Conservative estimate: Interpreted patterns explain <5% of the 5.69 bpc performance.
The bulk of compression comes from uninterpreted character-level statistics in the hidden→output

weights. The model is primarily a character-level statistical predictor with word-boundary structure
emerging from the space pattern.

7 Open Questions

7.1 From Previous Archives

1. Why doesn’t memory depth show predicted decay? Observed flat to 30 chars, pre-
dicted 12.

2. How do LSTMs select what entropy to carry? Forget gate should correlate with local
entropy.

3. Can we inject longer patterns within precision budget? Trigrams, 4-grams?

4. What is the learning function ω in gradient terms?

7.2 From Current Analysis

1. How to collapse to natural ESs? The 18 clusters need semantic names.

2. What do h62, h3, h72 encode? They receive strong space patterns but role unclear.

3. How to represent words as character covariation? Not lookup, but pattern structure.

4. What patterns to inject for next tick? Word endings, common bigrams?

8 Testable Predictions

Eight predictions from archive 20260131 5, with current status:
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P# Prediction Status

P1 Random RNN memory decays exponentially Untested
P2 Whh spectral radius ≈ 1 Refuted (|λmax| = 2.52)
P3 LSTM forget gate ∼ entropy correlation Untested
P4 SVD rank curve monotonic to ∼64 Validated (effective dim ∼64)
P5 Injection advantage shrinks with training Validated (0.99 → 0.28 bpc)
P6 Hidden size = effective rank Untested
P7 English bigram injection hurts non-English Untested
P8 float64 doubles memory depth Untested

9 Recommendations for Continued Analysis

9.1 Immediate Next Steps

1. Name the 18 natural ESs: Use correlation clusters to define coarser ESs with semantic
labels.

2. Analyze h62, h3, h72: These receive strong space patterns; understand their role.

3. Map hidden→hidden structure: 4,183 recurrent patterns largely unexplored.

4. Inject word-ending patterns: Test if adding ‘-ed’, ‘-ing’, ‘-tion’ patterns helps.

9.2 Medium-Term Goals

1. Reach lexicon milestone: Understand how ∼100 common words are encoded.

2. Develop lift procedure: Isomorphic UM → interpretable UM with fewer ESs.

3. Build injection procedure: Write new patterns without losing existing signal.

4. Improve bpc: Current 5.69 is far from 1.1 SOTA; each tick should improve.

9.3 Theoretical Work

1. Formalize the tanh stability mechanism: Why does saturation preserve information?

2. Quantify precision loss in recurrent weights: When doesWhh injection become possible?

3. Develop hierarchical ES theory: How do fine ESs (bytes) relate to coarse ESs (words)?

10 Conclusion

Eight days of research established:

1. A working methodology: The tick-tock cycle between RNN training and UM interpreta-
tion.

2. An exact isomorphism: The doubled-E UM matches RNN performance exactly.

3. Two interpretable ESs: Word boundary (h2) and syllable momentum (h35).
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4. Successful pattern injection: SVD gives 1 bit/char head start.

5. Massive redundancy: 128 neurons collapse to ∼18 natural ESs.

6. A unified theory: Q = λ connects Bayes, thermo, AC, and neural nets.

7. Key corrections: The 53% claim was wrong; spectral radius hypothesis refuted.

The model is primarily a character-level statistical predictor. Word boundaries emerge from
the space pattern; syllable structure from CV alternation. Words are not explicitly encoded—they
are emergent patterns of character covariation.

Coverage remains low: ∼31% of events touched, <5% of bpc explained. The next phase should
focus on understanding the hidden→hidden recurrent structure and developing procedures for in-
jecting lexical knowledge.
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